

FY2003 UNIVERSITY SOFTWARE INITIATIVE PROPOSAL

FOR THE

NASA SOFTWARE IV&V FACILITY

Initiative Title: Sensitivity of Software Reliability to Operational Profile
Errors: Architecture-Based Approach

Initiative ID: Project 10005549, Award 1002193R

May 2003 deliverable:

Report on

Uncertainty analysis of software operational profile based on

perturbation theory

Katerina Goseva–Popstojanova

Sunil Kumar Kamavaram

LANE Department of Computer Science and Electrical Engineering
West Virginia University

Report Summary

In this report we address the use of perturbation theory for uncertainty analysis of software

operation profile. First, we briefly describe the perturbation theory and then we explain how we

relate this theory to our research work. The perturbation theory as a method for uncertainty

analysis is applied and validated on three case studies: the software developed for the European

Space Agency, NASA’s Hub Control System (HCS) from the International Space Station (ISS),

and an e-commerce application. Finally, we present the future directions of our research on

uncertainty analysis in software reliability.

Technical Report, May 2003 Page 1

Table of Contents

1. Introduction ………………………………………………………………. 3

2. Sensitivity analysis based on perturbation theory ………………………... 6

2.1. Sensitivity analysis in terms of mean first passage times ………………………… 7

3. Application of perturbation analysis on case studies …………………….. 8

3.1. European Space Agency case study ……………………………………………… 8

3.2. Hub Control System case study ………………………………………………….. 12

3.3. E-commerce case study …………………………………………………………... 16

4. Comparison of the methods for uncertainty analysis ……………………. 19

5. Conclusion ……………………………………………………………….. 21

6. References ……………………………………………………………….. 21

Technical Report, May 2003 Page 2

1. Introduction

Software reliability is defined as the probability that software product will work without

failure in a specified environment for a specified exposure period. The exposure period can be

execution time or software runs. The environment usually is characterized by a set of input states

along with their probabilities of occurrence. This probability distribution over the input space

that represents the frequencies of occurrence of possible input states in the operation of software

application is known as operational profile. Thus, the predictive quality of software reliability

models is affected by the ability to estimate the correct operational profile. However, building an

operational profile is not an easy task, especially for a new product. Therefore, it is of critical

importance to study the sensitivity of the software reliability to the errors in the operational

profile, particularly when reliability estimates with high accuracy are required.

In general, the estimation of a trustworthy operational profile is difficult because it requires

anticipating the field usage of the software and a priori knowledge about the application and

system environments. A typical example would be a flight control system of a spacecraft in

which very critical software components are activated by physical events whose frequencies

during the field usage are totally unknown. Further, in process control applications various

software components are activated by complex sequences of events whose frequencies can

hardly be estimated a priori. In other cases, a single operational profile is not sufficient to

describe the use of the product by different users. Because the effort required to derive an

operational profile for each group of users is usually extremely high, the usual solution is to

adopt an approximate operational profile that represents a rough average of the operational

profiles of the different users. In addition to the above difficulties, problems could arise due to

the changes of the operational profile during the development and field usage of the software.

Thus, software systems evolve because functions are added or modified. As a consequence, the

way in which the software is used also evolves, and the operational profile changes. This, of

course, will invalidate any existing estimates of the operational profile.

These reasons can easily lead to erroneous estimates of the operational profile which will

directly affect the reliability estimate. Studying the variations of the reliability estimate due to

the inaccuracy in the operational profile is especially important for NASA domain software

which is designed to deal with events whose frequencies are difficult or impossible to predict

Technical Report, May 2003 Page 3

accurately. The objective to this project is to develop an architecture-based methodology for

computing the sensitivity of software reliability to the operational profile errors.

 In the first year of this project (FY02) we have developed a methodology for uncertainty

analysis of architecture-based software reliability models suitable for large complex component-

based applications and applicable throughout the software life cycle [Goseva02a], [Goseva02b].

In order to estimate the system reliability using architecture-based model we need to know the

software architecture (structure of component interactions), software usage described by the

operational profile (relative frequencies of component interactions determined by transition

probabilities), and software failure behavior (component reliabilities or failure rates)

[Goseva01a], [Goseva01b]. Our methodology considers different approaches for building

software architecture (intended approach and informed approach) and estimating component

reliabilities (growth models, non-failed executions, and fault injection) as shown in Figure 1.

This methodology for uncertainty analysis can be applied to any architecture-based software

reliability model that has a close form solution for the system reliability. It addresses the

parameter uncertainty problem and enables us to study how the uncertainty of parameters

propagates in the system reliability. Within this methodology we are considering several

different methods for uncertainty analysis (see Figure 2) [Goseva02b]. So far, we have used

entropy [Kamavaram02], [Goseva02f], methods of moments [Goseva02d], [Goseva02e] and

Monte Carlo simulation [Goseva02e]. We have applied and validated our methodology on two

case studies [Goseva02b]: software developed for the European Space Agency and NASA’s Hub

Control System (HCS) from the International Space Station (ISS). A detailed description of the

application of our methodology on these case studies can be found in [Goseva02b].

The choice of the method for uncertainty analysis will depend on criteria such as data

requirements, reliability measures derived, accuracy of the solutions, and scalability with respect

to the number of components. Detailed comparison of the entropy, method of moments, and

Monte Carlo simulation is presented in [Goseva02c].

 In this report we focus on perturbation theory as a method for uncertainty analysis of the

software operational profile. First, we briefly describe the perturbation theory and then apply it

on three case studies: the software developed for the European Space Agency, NASA’s Hub

Control System (HCS) from the International Space Station (ISS), and an e-commerce

application.

Technical Report, May 2003 Page 4

Figure 1. Methodology for uncertainty analysis of software reliability

Figure 2. Methods for uncertainty analysis in software reliability

Technical Report, May 2003 Page 5

2. Sensitivity analysis based on perturbation theory

Perturbation theory provides mathematical means to study how the stationary distribution of

a Markov chain containing an irreducible set of states changes as the transition probabilities of

the chain vary. In our research we define the operational profile as a discrete time Markov chain

with transition probability matrix P. Using perturbation theory we can assess the sensitivity of

stationary probabilities][iππ =

i

 to perturbations in the operational profile (i.e, transition

probability matrix P). Since π can be interpreted as the expected execution rate of component i

in the long run, it represents a measure of component usage which can be used to identify critical

components.

Let P be the transition probability matrix of a finite irreducible Markov Chain and][iππ = be

the stationary probability vector. The stationary distribution vector of P is the positive vector πT

= (π1, π2, …… , πn) satisfying

πT P = πT, (1) 1.
n

1j jπ =∑
=

Suppose P is perturbed to a matrix P~ , which is the transition probability matrix of an n

state finite irreducible, homogenous Markov chain. Denoting by π~ the stationary probability

vector of the perturbed matrix P~ , the aim is to assess the sensitivity of the stationary distribution

vector in terms of the change P~-PE ≡ in the transition probability matrix. Sensitivity results

concerning absolute perturbations have been phrased in terms of bounds given by the equation

[Ipsen94]

EkTT ≤−ππ ~ (2)

where E is the norm of the perturb matrix and k is a condition number used as measure of

sensitivity. In the literature survey we came across eight existing perturbation bound, that is,

eight different condition numbers k1,…,k8 . Most of the condition numbers are expressed in

terms of either the fundamental matrix of the underlying Markov chain or the

group inverse of A≡I-P [Meyer94], [Schweitzer68]. While several condition numbers provide

good numerical measure of the maximal extent to which the magnitude of the perturbation can

be amplified, some condition numbers suffer from certain shortcomings and are not satisfying for

two reasons. First, irreducible chains exist for which the bounds are not tight, so the condition

1)(−+≡ TeAZ π

Technical Report, May 2003 Page 6

number k may seriously overestimate the sensitivity to perturbations. Second, the bounds

generally provide very little information about the relative error in individual stationary

probabilities. Moreover, it is theoretically possible to compute the condition numbers k but it is

usually expensive to do so relative to computation of the stationary distribution vector itself

[Meyer94], [Cho00], [Cho01].

The condition number k8, expressed in terms of the mean first passage times in the

Markov chain, is the smallest condition number, that is, it provides the tightest bound on the

stationary probability. Further, viewing sensitivity in terms of mean passage times can

sometimes help practitioners decide whether or not to expect sensitivity by merely observing the

structure of the chain without computing or estimating the condition numbers. For example, no

stationary probability of the Markov chain consisting of a dominant central state with

connections to and from all other states can be excessively sensitive to perturbations in P.

2.1. Sensitivity analysis in terms of mean first passage times

Let P and P~ be the transition probability matrices for the two irreducible n state Markov

chains with respective stationary probability vectors and . Let denote the mean first

passage time from the i

Tπ

jj

Tπ~ ijM

th state to the jth state and denote the mean return time for the jM th

state in the unperturbed chain. The absolute change in the jth state stationary probability is given

by equation [Cho00]

∞⋅≠⋅≤− E
jjM

ijM
ji

jj
max

2
1~ππ , (3)

which is equivalent to saying that the relative change in jπ is

∞⋅
≠

⋅≤
−

EijM
jij

jj
max

2

~
1

π

ππ
 . (4)

 In [Hunter00], [Hunter02a], [Hunter02b] a standard procedure for computing the mean

first passage times of a finite irreducible discrete time Markov chains has been developed. If the

stationary probability vector has already been computed then using either fundamental matrix

Technical Report, May 2003 Page 7

[,1-PIZ Π+−≡] where Π or Meyer’s group inverse [Meyer94] Teπ= Π−≡ ZA# , we can

compute the matrix M. The diagonal elements of the matrix M specify the mean return time of

the states and non-diagonal elements specify the mean first passage time from state i to state j. If

 then matrix M is given by equation [Hunter02a]][#
ij

T a=π] 1 e−−[# TePIA +−= π

DALAImM dij][][## +−== (5)

 where , e is a column vector with all elements equal to 1, e’ is a row vector with all

elements equal to 1, and .

]1[=′= eeL

1)(−Π= dD

3. Application of perturbation analysis on case studies
3.1. European Space Agency case study

The application from the European Space Agency [Goseva01b] provides language-oriented

user interface, which allows the user to describe the configuration of an array of antennas. Its

purpose is to prepare a data file in accordance with a predefined format and characteristics from

a user, given the array antenna configuration described using the Array Definition Language.

The program was developed in C language and consists of almost 10,000 lines of code. It has

been extensively used after the last fault removal without failures. This gold version was used as

an oracle in the experiment. A set of test cases was generated randomly accordingly to the

known operational profile determined by interviewing the users of the program. Component

traces obtained during the testing were used for building the software architecture and estimating

transition probabilities. It follows that for the ESA case study we use an informed approach.

Figure 3 presents the special case of our methodology for uncertainty analysis used for the

European Space Agency case study. Details about this case study are given in [Goseva01b],

[Goseva02b].

Technical Report, May 2003 Page 8

Figure 3. Special case of the methodology used for the ESA case study

DTMC that represents software architecture is shown in Figure 4. Components 1, 2, and

3 correspond to the Parser, Computational, and Formatting subsystems respectively. State E

represents the completion of execution.

1

p12

p23

3

E

2

1

1-p12

 1-p23

Figure 4. Software architecture for the ESA case study

Technical Report, May 2003 Page 9

In this experiment we look at the stability of the above Markov chain by perturbing the

transition probability matrix, that is, the operational profile. Let us consider the transition

probability matrix of operation profile A denoted by PA and let this matrix be perturbed to matrix

PB, which is the transition probability matrix of operational profile B of the same application.

Matrices PA, PB, and the perturb matrix E are given below.



















=

0001
1000

0.22960.770400
0.406700.59330

AP



















=

0001
1000

0.31340.686600
0.263600.73640

BP



















=

0000
0000

0.10180.1018-00
0.1431-00.14310

E

 Next, we assess the sensitivity of the stationary probabilities (i.e., components execution

rates) using the equations (3), (4) and (5). We can observe from Table 1 that the chain

representing the operational profile A is absolutely stable since each stationary probability is

insensitive to perturbations in PA in the absolute sense.

States 1 2 3 E

Stationary Probability 0.3278 0.1945 0.1498 0.3278

Absolute Change 0.12997 0.12166 0.1217 0.09619

Relative Change 0.39644 0.62549 0.8119 0.29341

Table 1. Perturbation analysis of ESA case study

We also consider a hypothetical example based on the European Space Agency application

which has a loop back from component 2 to 1 [Goseva01b], [Goseva02b]. The software

architecture for hypothetical example is shown in Figure 5.

Technical Report, May 2003 Page 10

1-p21-p23

p12

1

p21

p23

3

E

2

1

1-p12

Figure 5. Software architecture for the hypothetical example

We assume that the transition probability matrix PC of the hypothetical example is

perturbed by matrix E which results into a perturbed matrix PD as shown below.

 0

 0

 1


















=

000
100
502500250
20080
...
..

CP


















−

=

0000
0000

500050
0000

..
E



















=

0001
1000
02500750
200800

..
..

DP

The sensitivity of the stationary probabilities is estimated using equations (3), (4) and (5).

From the results given in Table 2 it can be seen that the operational profile is not stable in

relative sense to the perturbations. In particular, the component 3, which has the smallest

stationary probability, is the most sensitive in relative sense to the changes made to the transition

probability matrix PC.

States 1 2 3 E

Stationary Probability 0.35715 0.28571 0.07143 0.28571

Absolute Change 0.35714 0.5 0.46429 0.35714

Relative Change 1 1.75 6.5 1.25

Table 2. Perturbation analysis of the hypothetical example

Technical Report, May 2003 Page 11

3.2. Hub Control System case study

In this section we assess the sensitivity of NASA’s HCS case study using perturbation

theory. The case study is a Computer Software Configuration Item (CSCI) resident in the Hub

Control Zone Multiplexers/Demultiplexers (HCZ MDMs) which are installed in the Node 3

Module of the ISS (International Space Station). For this case study we had available the UML

use case diagram and sequence diagrams for each use case. Therefore, we are using the intended

approach to build software architecture. We build DTMCs using UML sequence diagrams that

present software components used for given scenario and the messages that are exchanged

between these components. The expression used to estimate the transition probability from

component i to component j is given by
i

ij
ij n

n
p = , where is the number of times messages are

transmitted from component i to component j and is the total number of massages from

component i to all other components that are present in the sequence diagram. Figure 6 presents

the special case of our methodology used for the HCS case study.

ijn

in

Figure 6. Special case of the methodology used for HCS case study

Technical Report, May 2003 Page 12

Figure 7 shows the main use case diagram and all the relationships among the use cases and

the actors. Each use case is realized by at least one sequence diagram (i.e., scenario).

Mode_settin
g

Single_MT

<<uses>
>
<<uses>
>

Single_LT

<<uses>
>
<<uses>
>

Dual_LT_Failed

<<uses>
>
<<uses>
>

Dual

<<uses>
>
<<uses>
>

Dual_MT_Failed

<<uses>
>
<<uses>
>

MT_Pump_Retry

LT_Pump_Retry

Retry_Both_Pumps

SFCA_MT

SFCA_LTPPA_MTPPA_LT

W arnig_for_Total_failu
re

Failure_Recover
y

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

<<uses>
>
<<uses>
>

Operator

Monitoring

Figure 7. Use case diagram of the HCS case study

In this report we illustrate the application of the perturbation analysis on the Both Pumps

Retry scenario. Figure 8 shows the sequence diagram of this scenario. Analyzing the sequence

diagram of the Both Pumps Retry scenario given in Figure 8, we construct the DTMC that

represents the software execution behavior as shown in Figure 9.

Technical Report, May 2003 Page 13

RPCM_LT / rPCMR2
 : RPCM

RPCM_MT / rPCMR1
 : RPCM

 / pFMC_MTR1
 : PFMC_MT

 / pFMC_LTR1
 : PFMC_LT

 / fRITCSR1
 : FRITCS

 / sCITCSR1
 : SCITCS

Switch_CloseFailed Switch_CloseFailedDual_Mode_OOOODual

1: LT_Failed1: LT_Failed

1: MT_Failed1: MT_Failed

2: Pump_Retry(Retry)2: Pump_Retry(Retry)

PPAMT_F_PPALT_F_SFCAMT_O_SFCALT_O

3: Open_Switch (void)3: Open_Switch (void)

4: Open_Switch (void)4: Open_Switch (void)

Dual Switch_Open

PPAMT_F_PPALT_F_SFCAMT_O_SFCALT_O Switch_Open

5: Close_Switch (void)5: Close_Switch (void)

Switch_ClosePPAMT_F_PPALT_F_SFCAMT_O_SFCALT_O

6: Pump_Retry (void)6: Pump_Retry (void)

PPAMT_F_PPALT_F_SFCAMT_O_SFCALT_O Pump_Retry

7: Retry_Success (void)7: Retry_Success (void)

8: Pump_Retry_Success (void)8: Pump_Retry_Success (void)

Dual_Mode_OFOO
8: MT_Operating (void)8: MT_Operating (void)

Dual

Dual_Mode_OFOO Operating

Pump_Retry (Pump_Retry_Data{Retry_Type 1,Fail ure_Type 6})Pump_Retry (Pump_Retry_Data{Retry_Type 1,Fail ure_Type 6})

10: Pump_Retry (void)10: Pump_Retry (void)

Dual_Mode_OFOO Pump_Retry

11: Retry_Success (void)11: Retry_Success (void)

12: Pump_Retry_Success (voi d)12: Pump_Retry_Success (voi d)

Dual Dual_Mode_OOOO

12: LT_Operating (void)12: LT_Operating (void)

OperatingDual_Mode_OOOO

Figure 8. Sequence diagram of the Both Pumps Retry scenario

Technical Report, May 2003 Page 14

E

S
PFMC_MT

PFMC_LT

RPCM_LT

RPCM_MT

SCITCS

FRITCS

Figure 9. DTMC for the Both Pumps Retry scenario

The sensitivity of the operational profile of Both Pumps Retry scenario given in Figure 9 is

analyzed by perturbing the transition probability matrix P. The resulting matrix P~ represents a

different usage of the same scenario.





























=

10000000
10000000
00001000
00001000
04/92/91/901/91/90
00001000
00001000
000001/21/20

E
SCITCS

RPCM_MT
RPCM_LT
FRITCS

PFMC_MT
PFMC_LT

S

P





























−

−

=

00000000
00000000
00000000
00000000
01/301/901/91/90
00000000
00000000
000000.30.30

E
SCITCS

RPCM_RT
RPCM_LT
FRITCS

PFMC_MT
PFMC_LT

S

E





























=

10000000
10000000
00001000
00001000
01/92/92/902/92/90
00001000
00001000
000004/51/50

E
SCITCS

RPCM_MT
RPCM_LT
FRITCS

PFMC_RT
PFMC_LT

S

P~

The results of the perturbation analysis obtained using equations (3), (4), and (5) are

given in Table 3. Note that the execution rates of components FRITCS and RPCM_MT have the

Technical Report, May 2003 Page 15

same absolute change. However, the execution rate of the component RPCM_MT is more

sensitive in relative sense to the perturbations than FRITCS. The component RPCM_LT, which

has the lowest stationary probability, has the highest value of the relative change of the execution

rate. This implies that components with lowest stationary probability (i.e., the rarely executed

components) are more sensitive in relative sense. This observation is very important for software

verification and validation due to the fact that rarely executed components usually handle critical

functionality such as for example exception handling or recovery. Further, note that the DTMS

that describes the execution behavior of the HCS case study consists of a dominant central sate

(FRITCS) with connections to and from all other states. For this type of software architectures,

no component execution rate can be excessively sensitive to perturbations in the operational

profile.

States S PFMC_LT PFMC_MT FRITCS RPCM_LT RPCM_MT SCITCS E

Stationary
Probability 0.133 0.1 0.1 0.3 0.033 0.067 0.133 0.133

Absolute Change 0.289 0.333 0.333 0.4 0.367 0.4 0.289 0.289

Relative Change 2.167 3.333 3.333 1.333 11 6 2.167 2.167

Table 3. Perturbation analysis of the HCS case study

3.3. E-commerce case study

In this section we analyze the sensitivity of a typical e-commerce application. For

illustration, we adopt the example of an e-commerce application presented in [Menasce02]. In

the e-commerce applications the users interact with the Web sites through sessions that consist of

consecutive request to execute e-business functions (search, add to cart, pay and so on) during a

single visit to the site. In the example presented in [Menasce02], the user’s navigation pattern

within a session is captured by so called Customer Behavior Model Graph (CBMG). The CBMG

describes how the users navigate through the site, which functions they use and the frequency of

transitions form one function to the other function. Clearly, the CBMG corresponds to a discrete

time Markov chain.

Due to a large number of diverse users, a single operational profile is not sufficient to

describe the use of the Web site by different users. Thus, in [Menasce02] two operational

profiles are given showing the usage of the same e-commerce site by two different types of

Technical Report, May 2003 Page 16

users: an occasional buyer and a heavy buyer. DTMCs for these two operational profiles are

shown in Figure 10 and Figure 11, respectively.

5.0 5.0

0.1

0.1

4.0

2.02.0

35.0

35.0

425.0425.0

05.0
3.0

05.0 05.0

4.0

05.0

1.0

2.0 2.0

05.0

2.0

Pay

Browse

Entry

Search

Add

Select

Exit

Figure 10. Operational profile for an occasional buyer

5.0 5.0

0.1

0.1

3.0

3.0

3.0

2.02.0

35.0 3.0

15.0 15.0

325.0325.0

1.0

1.0
05.0

225.0 225.0

05.0
3.0

5

Pay

Browse

Entry

Search

Add

Select

Exit

Figure 11. Operational profile for a heavy buyer

Technical Report, May 2003 Page 17

Construction of the DTMCs in Figures 10 and 11 includes constructing the structure first and

then assigning transition probabilities. For Web applications, there is usually a close resemblance

between navigation patterns and the underling Web design and code because Web sites are

designed to support directly such navigations. Consequently, the basic structure can be easily

identified from product specification, related design documents and other information sources,

which corresponds to our intended approach. Also one might use the informed approach such as

for example to extract the architecture from the HTML code or the Web access logs. Note that in

our project Performability of Web Based Applications, funded by NASA OSMA Software

Assurance Research Program (SARP) managed through the NASA Independent Verification and

Validation Facility, we are addressing construction of the typical usage profiles from the Web

access logs.

Here we assess the sensitivity of e-commerce application by perturbing the transition

probability matrix P that represents the operational profile of an occasional buyer (i.e. DTMC

shown in Figure 10). The matrix P~ is the resultant transition probability matrix, which

represents the operational profile of a heavy buyer scenario (i.e. DTMC shown in Figure 11),

after perturbing the matrix P by matrix E.

























=

0000001
1000000

0.1000.050.4250.4250
0.050.30.20.050.20.20
0.0500.200.40.350
0.0500.200.350.40

00000.50.50

Ex
Pa
Se
Ad
Sr
Br
En

P

























−−−
−

−−
−−

=

0000000
0000000

0.05000.250.10.10
000.10.050.0250.0250

0.10000.050.050
0.10000.050.050
0000000

Ex
Pa
Se
Ad
Sr
Br
En

E

























=

0000001
1000000

0.05000.30.3250.3250
0.050.30.10.10.2250.2250
0.1500.200.350.30
0.1500.200.30.350

00000.50.50

Ex
Pa
Se
Ad
Sr
Br
En

P~

Technical Report, May 2003 Page 18

As explained before the components with lowest execution rates are more sensitive

relatively to changes in the operational profile. Thus, it can be observed from the results shown

in Table 4 that the components ‘Add’ and ‘Pay’ which are visited rarely in the operational profile

of an occasional buyer are having the highest relative changes, that is, they are the most sensitive

in relative sense to the perturbation in P that leads to the operational profile of a heavy buyer.

Thus, ‘Add’ and ‘Pay’ exhibit excessive relative change in execution rate due to the changes in

the operational profile. In particular, the relative change of the expected execution rate of

component ‘Add’ is one order of magnitude higher and the relative change of the expected

execution rate of component ‘Pay’ is two orders of magnitude higher than execution rates of

other components in the e-commerce case study.
States Entry Browse Search Add Select Pay Exit

Stationary Probability 0.0542 0.3666 0.3666 0.0078 0.1482 0.0023 0.0542

Absolute Change 0.2365 0.4065 0.4065 0.2672 0.3149 0.2494 0.2365

Relative Change 4.3615 1.1089 1.1089 34.25 2.125 106.58 4.3615

Table 4. Perturbation analysis of the e-commerce case study
4. Comparison of the methods for uncertainty analysis

The choice of the most suitable method for uncertainty analysis for a particular application

may be based on the following criteria:

� data requirements

� reliability measures derived

� accuracy of the solutions

� scalability with respect to the number of components.

 In [Goseva02c] we have compared the entropy, method of moments, and Monte Carlo

simulation accordingly to the above criteria. The characteristics of perturbation analysis as a

method for uncertainty analysis are the following:

� Data requirements

o Low: Point estimates of the transition probabilities.

� Reliability measures derived

o NA: Reliability measures are not derived. Instead, we study the sensitivity of the
expected execution rates of software components to perturbations in the operational
profile.

Technical Report, May 2003 Page 19

� Accuracy of the solutions

o Analytical solution; bounds for the absolute and relative change of components execution
rates.

� Scalability

o Scales well. Could be used for large systems.
Next we update our “Make a choice” table [Goseva02c], [Goseva02e] that summarizes the

comparison of different methods for uncertainty analysis considered in FY02 and FY03. “Make a

choice” table given in Table 5 provides a sound guideline for choosing the most appropriate

method for a given software application accordingly to the above criteria.

Method Data
requirements

Uncertainty of the
operational profile

Reliability
measures
derived

Accuracy of
the solution Scalability

Entropy Point estimates � Uncertainty of
operational
profile

� Uncertainty of
components

� Expected
execution rates
of components

NA Exact analytical
solution

Large
systems

Method of
moments

Moments of
components
reliabilities

NA Moments of
system reliability

Approximate
solution
� Accuracy may

be increased
by higher
order Taylor
series

� No sampling
errors

Medium
systems

Monte Carlo
simulation

� Probability
distribution
functions of
components
reliabilities and
transition
probabilities
� Generation of

random numbers

NA Many
characteristics
of system
reliability
� Frequency chart
� Distribution
� Moments
� Percentiles

Approximate
solution
� Accuracy may
be increased by
increasing the
sample size
� Sampling errors
may be involved
in case of long
tail distributions

Large
systems

Perturbation
analysis

� Point estimates of
transition
probabilities

� Bounds on the
absolute and
relative change of
components
execution rates

NA Analytical
solution

Large
systems

Table 5. Make a choice table: Comparison of different methods for uncertainty analysis

Technical Report, May 2003 Page 20

5. Conclusion
In this report we have presented a new method for uncertainty analysis based on

perturbation theory that can be used to study how the change in the operational profile affects the

expected execution rates of software components. We have applied this method on three case

studies: European Space Agency, NASA’s Hub Control System (HCS) from the International

Space Station (ISS), and an e-commerce application. Several conclusions are made based on

obtained results:

� If any stationary probability is relatively insensitive, then all large stationary probabilities are

insensitive.

� If a small stationary probability is relatively insensitive, then it is absolutely insensitive and

the operational profile is stable in both absolute and relative sense.

� Small stationary probabilities are the ones that appear least likely to be relative insensitive to

perturbations.

Based on these conclusions we say that the stability of operational profile can be studied by

looking at the small stationary probabilities. Further, components with small execution rates (i.e.,

small stationary probabilities) are the most sensitive to changes in the operational profile. This

observation is very important for software verification and validation due to the fact that rarely

executed components usually handle critical functionality such as for example exception

handling or recovery.

The main focus of our future work is to develop the uncertainty method based on confidence

intervals that can be used for certification of component based software systems. We will apply

this method on the currently available case studies and any additional NASA cases studies that

might be available in the future.

6. References
[Cho00] G. E. Cho and C. D. Meyer, “Markov Chain Sensitivity Measured by Mean First
Passage Times”, Linear Algebra Appl., 316, 2000, pp. 21-28.

[Cho01] G. E. Cho and C. D. Meyer, “Comparison of Perturbation Bounds for the Stationary
Distribution of a Markov Chain”, Linear Algebra Appl., 335, 2001, pp.137-150.

[Goseva01a] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-Based Approach to
Reliability Assessment of Software System”, Performance Evaluation, Vol.45, No.2-3, 2001,
pp.179-204.

Technical Report, May 2003 Page 21

Technical Report, May 2003 Page 22

[Goseva01b] K. Goseva-Popstojanova, A. P. Mathur, and K. S. Trivedi, “Comparison of
Architecture-Based Software Reliability Models”, 12th International Symposium on Software
Reliability Engineering, 2001, pp.22-31.

[Goseva02a] K. Goseva-Popstojanova and S. Kamavaram, “Architecture-Based Methodology for
Studying Sensitivity of Software Reliability to Operational Profile Errors”, Technical Report,
March 2002.

[Goseva02b] K. Goseva-Popstojanova and S. Kamavaram, “Application of the Methodology for
Uncertainty Analysis on Case Studies”, Technical Report, September 2002.

[Goseva02c] K. Goseva-Popstojanova and S. Kamavaram, “Final Report”, Technical Report,
September 2002.

[Goseva02d] K. Goseva-Popstojanova and S. Kamavaram, ”Uncertainty Analysis of Software
Reliability Based on Method of Moments”, 13th International Symposium on Software Reliability
Engineering, Nov 2002.

[Goseva02e] K. Goseva-Popstojanova and S. Kamavaram, “Assessing Uncertainty in Reliability
of Component-Based Software”, submitted for publication.

[Goseva02f] K. Goseva-Popstojanova and S. Kamavaram, “Uncertainty Analysis of the
Operational Profile and Architecture-Based Software Reliability based on Entropy”, submitted
for publication.

[Hunter00] J. J. Hunter, “A Survey of Generalized Inverses and their Use in Stochastic
Modeling”, Res. Lett. Inf. Math. Sci., 1, 2000, pp. 25-36.

[Hunter02a] J. J. Hunter, “Generalized Inverses, Stationary Distributions and Mean First Passage
Times with Applications to Perturbed Markov Chains”, Res. Lett. Inf. Math. Sci., 3, 2002, pp. 99-
116.

[Hunter02b] J. J. Hunter, “Stationary Distributions and Mean First Passage Times of Perturbed
Markov Chains”, Research Letters in Information and Mathematical Sciences, Institute of
Information and Mathematical Sciences, Massey University, Auckland, New Zealand, 3, 2002
pp. 85-98.

[Ipsen94] I. C. F. Ipsen and C. D. Meyer, “Uniform Stability of Markov Chains”, SIAM J. Matrix
Anal. Appl., 15, 1994, pp. 1061-1074.

[Kamavaram02] S. Kamavaram and K. Goseva-Popstojanova, “Entropy as a Measure of
Uncertainty in Software Reliability”, 13th International Symposium on Software Reliability
Engineering, Nov 2002.

[Menasce02] D. A. Menasce, “TCP-W A Banchmark for E-Commerce”, IEEE Internet
Computing, Vol.6, No.3, May/June 2002, pp.83-87.

[Meyer94] C. D. Meyer, “Sensitivity of the Stationary Distribution of a Markov Chain”, SIAM J.
Matrix Anal. Appl., Vol 15, No. 3, July 1994, pp. 715-728.

[Schweitzer68] Paul J. Schweitzer, “Perturbation Theory and Finite Markov Chains”, J. Appl.
Prob. 5, 1968, pp. 401-413.

	Software reliability is defined as the probability that software product will work without failure in a specified environment for a specified exposure period. The exposure period can be execution time or software runs. The environment usually is characte
	These reasons can easily lead to erroneous estimates of the operational profile which will directly affect the reliability estimate. Studying the variations of the reliability estimate due to the inaccuracy in the operational profile is especially import
	Table 5. Make a choice table: Comparison of different methods for uncertainty analysis

